

Studying the Implementations and Performance of

the Lightwight Cryptographic TinyJAMBU

Algorithm Between C++ Compilers

Rob Ranit
Electrical and Computer Engineering

Department
California State Polytechnic University

Pomona, CA, US
rranit@protonmail.com

Abstract—This research paper focuses on the performance

of a C++ implementation of the lightweight cryptographic

algorithm TinyJAMBU, focusing specifically on the differences

of compiling this algorithm with the GCC compiler and the

Clang compiler. From analysis of the elapsed time it took to run

the TinyJAMBU algorithm on two different compilers, the

Clang compiler proved to be slightly faster and more efficient

than the GCC compiler.

Keywords—cryptography, TinyJAMBU, C++, Python,

compilers, performance

I. INTRODUCTION

TinyJAMBU is a lightweight cryptographic algorithm that
is a variant of the JAMBU mode. The state and block sizes
TinyJAMBU is significantly smaller than JAMBU. This
algorithm supports key sizes of 128 bits, 192 bits, and 256 bits.
The C++ implementation of the TinyJAMBU algorithm used
in this paper was created by software engineer Anjan Roy [1],
and is based off of the TinyJAMBU v2 implementation
designed by Hongjun Wu and Tao Huang at the Division of
Mathematical Sciences at Nanyang Technological University
[2]. GCC is a collection of compilers in the GNU Compiler
Collection, which is a set of compilers for multiple different
programming languages, such as C, C++, Fortran, Ada, Go,
and more. Clang is another compiler that supports languages
in the C language family, such as C and C++[3]. The two
compilers are two of the most prominent compilers for C
languages today. This paper aims to see which compiler
between them performs better with the TinyJAMBU
cryptographic algorithm.

II. METHODOLOGY AND BENCHMARKING ENVIRONMENT

A. Architecture and Setup

All benchmarking was done in a virtual environment.
Utilizing Oracle’s Virtual Box, this benchmark was performed
in Ubuntu 20.04 LTS. The version of Clang used was version
10.0.0. The version of GCC-10 used was 10.5.0. The main
computer hardware specifications include the following:

• 9th Gen Intel Core i7-9750H

• NVIDIA GeForce RTX 2070 Max-Q

• 16GB DDR4 System Memory

• 8GB GDDR6 Video Memory

Each test ran utilizing 6 cores of the Intel i7-9750H
processor, at 2592.01 MHz per CPU. In the L1 cache memory,
there were 32 KiB of data and 32KiB of instructions. The
benchmark measured encryption and decryption execution
times, CPU times, and iterations, based on variable lengths of

cipher texts. The message block and the amount of feedback
bits were a constant 32 bits for all tests.

Utilizing the Google Benchmark library [4], we’re able to
measure the elapsed times, the CPU times, and iterations.
After setting up VirtualBox, utilizing the Ubuntu 20.04 LTS
ISO, downloading the libraries for the C++ TinyJAMBU
implementation as well as the Google Benchmark library,
we’re able to run the benchmark for the algorithm for keys of
length 128-bit, 192-bit, and 256-bit, as shown in the following
tables.

B. TinyJAMBU GCC Compiler Benchmark Results

TABLE I. 128-BIT KEY TINYJAMBU BENCHMARK, GCC COMPILER

TinyJAMBU GCC Compiler Benchmark, 128-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 71.2 71.1 9495955

Decrypt 64 75.5 75.4 7617103

Encrypt 128 84.3 84.3 7960551

Decrypt 128 89.2 89.1 7593124

Encrypt 256 116 116 6127276

Decrypt 256 119 119 5726532

Encrypt 512 180 180 2963753

Decrypt 512 175 175 3875714

Encrypt 1024 305 305 2449952

Decrypt 1024 289 289 2411235

Encrypt 2048 519 514 1357901

Decrypt 2048 515 515 1294626

Encrypt 4096 998 997 717637

Decrypt 4096 958 957 724850

Fig. 1. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in GCC, with a 128-bit key.

TABLE II. 192-BIT KEY TINYJAMBU BENCHMARK, GCC COMPILER

TinyJAMBU GCC Compiler Benchmark, 192-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 79.8 79.8 8199337

Decrypt 64 86.4 86.3 7316667

Encrypt 128 95.6 95.6 7123217

Decrypt 128 102 102 6725788

Encrypt 256 126 126 5428141

Decrypt 256 132 132 5569508

Encrypt 512 186 186 3731149

Decrypt 512 193 193 3646294

Encrypt 1024 300 300 2347730

Decrypt 1024 309 309 2249846

Encrypt 2048 518 517 1339384

Decrypt 2048 563 563 1216099

Encrypt 4096 985 984 693090

Decrypt 4096 994 993 702548

Fig. 2. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in GCC, with a 192-bit key.

TABLE III. 256-BIT KEY TINYJAMBU BENCHMARK, GCC COMPILER

TinyJAMBU GCC Compiler Benchmark, 256-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 73.0 73.0 8751660

Decrypt 64 76.9 76.8 9039270

Encrypt 128 88.2 88.2 7819704

Decrypt 128 91.4 91.4 7348778

Encrypt 256 118 118 6085791

Decrypt 256 120 120 4398762

Encrypt 512 186 186 3716075

Decrypt 512 176 176 3457891

Encrypt 1024 285 285 2329934

Decrypt 1024 290 290 2354627

Encrypt 2048 519 519 1259347

Decrypt 2048 529 529 1168170

TinyJAMBU GCC Compiler Benchmark, 256-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 4096 957 957 634665

Decrypt 4096 1067 1067 582095

Fig. 3. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in GCC, with a 256-bit key.

C. TinyJAMBU Clang Compiler Benchmark Results

TABLE IV. 128-BIT KEY TINYJAMBU BENCHMARK, CLANG COMPILER

TinyJAMBU Clang Compiler Benchmark, 128-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 70.8 70.8 9963749

Decrypt 64 79.8 79.7 8686099

Encrypt 128 102 91.8 8296536

Decrypt 128 90.9 90.9 8200675

Encrypt 256 110 110 6119417

Decrypt 256 123 122 5468743

Encrypt 512 175 175 3885993

Decrypt 512 215 214 3852183

Encrypt 1024 328 328 2384895

Decrypt 1024 330 330 2392181

Encrypt 2048 540 540 1365899

Decrypt 2048 546 545 1306265

Encrypt 4096 1015 1014 684962

Decrypt 4096 984 982 714019

Fig. 4. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in Clang, with a 128-bit key.

TABLE V. 192-BIT KEY TINYJAMBU BENCHMARK, CLANG COMPILER

TinyJAMBU Clang Compiler Benchmark, 192-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 93.7 93.6 8263304

Decrypt 64 92.8 92.7 7784718

Encrypt 128 96.3 96.3 6981783

Decrypt 128 109 109 6637518

Encrypt 256 134 134 4662549

Decrypt 256 139 139 4630137

TinyJAMBU Clang Compiler Benchmark, 192-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 512 191 191 3747377

Decrypt 512 193 193 3606906

Encrypt 1024 297 297 2281814

Decrypt 1024 307 306 2325037

Encrypt 2048 568 565 1324061

Decrypt 2048 537 537 1363393

Encrypt 4096 1042 1041 654262

Decrypt 4096 1093 1092 603619

Fig. 5. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in Clang, with a 192-bit key.

TABLE VI. 256-BIT KEY TINYJAMBU BENCHMARK, CLANG COMPILER

TinyJAMBU Clang Compiler Benchmark, 256-bit Key

Benchmark
Cipher Text

Length

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 64 72.9 72.9 9474823

Decrypt 64 81.5 81.4 9142459

Encrypt 128 88.0 88.0 7305085

Decrypt 128 93.5 93.5 7391933

Encrypt 256 114 114 6052136

Decrypt 256 120 120 5709360

Encrypt 512 191 191 3931573

Decrypt 512 179 179 3357417

Encrypt 1024 289 289 2412178

Decrypt 1024 289 289 2386002

Encrypt 2048 563 562 1247786

Decrypt 2048 543 543 1143018

Encrypt 4096 1017 1016 594645

Decrypt 4096 1018 1018 606637

Fig. 6. Table summary of the results of benchmarking the TinyJAMBU

C++ implementation compiled in Clang, with a 256-bit key.

III. ANALYSIS OF COMPILER BENCHMARK RESULTS

Utilizing the information gathered from the benchmark
above, we can analyze the performance of each compiler and
compare them. The benchmark gave us elapsed time, the CPU

time, and the number of iterations for each benchmark. This
allows us to use a few formulas for performance evaluation to
help determine performance metrics and compare both
compilers.

A. Relative Performance

The comparison between the performance of two different
processors can be defined for this situation as:

 PerformanceA / PerformanceB = n ()

Where A and B are the elapsed time of compilers, and n is
a unitless factor of how much faster compiler A is than
compiler B. Utilizing this formula on the above data, for when
the GCC compiler elapsed time is compiler A and the Clang
compiler elapsed time is compiler B, as well as vice versa, the
results yield the following:

TABLE VII. GCC VS CLANG ELAPSED TIME COMPARISON

TinyJAMBU Factors of Speedup Utilizing GCC vs Clang

Benchmark
Cipher Text

Length

128-bit

Key

192-bit

Key

256-bit

Key

Encrypt 64 1.006 0.852 1.001

Decrypt 64 0.946 0.931 0.944

Encrypt 128 0.826 0.993 1.002

Decrypt 128 0.981 0.936 0.978

Encrypt 256 1.055 0.940 1.035

Decrypt 256 0.967 0.950 1.000

Encrypt 512 1.029 0.974 0.974

Decrypt 512 0.814 1.000 0.983

Encrypt 1024 0.930 1.010 0.986

Decrypt 1024 0.876 1.007 1.003

Encrypt 2048 0.961 0.912 0.922

Decrypt 2048 0.943 1.048 0.974

Encrypt 4096 0.983 0.945 0.941

Decrypt 4096 0.974 0.909 1.048

Fig. 7. Table summary of the results of utilizing the relative performance

equation with A being the elapsed time of the GCC compiler, and B being

the elapsed time of the Clang compiler.

 The average performance for keys of length 128-bit, 192-
bit, and 256-bit are 0.949, 0.958, and 0.985 respectively.
Applying the definition of the relative performance metric,
this is an early indicator that the GCC compiler is slightly
slower than the Clang compiler when utilizing this
implementation of the TinyJAMBU algorithm, because this
formula is applied on the elapsed times gathered on the
benchmark for this algorithm.

 To further support this point, the calculations are also
performed with the Clang compiler elapsed time as A, and the
GCC compiler elapsed time as B in Fig. 8 below.

TABLE VIII. CLANG VS GCC ELAPSED TIME COMPARISON

TinyJAMBU, Factors of Speedup Utilizing Clang vs GCC

Benchmark
Cipher Text

Length

128-bit

Key

192-bit

Key

256-bit

Key

Encrypt 64 0.994 1.174 0.999

Decrypt 64 1.057 1.074 1.060

Encrypt 128 1.210 1.007 0.998

Decrypt 128 1.019 1.069 1.023

Encrypt 256 0.948 1.063 0.966

Decrypt 256 1.034 1.053 1.000

Encrypt 512 0.972 1.027 1.027

Decrypt 512 1.229 1.000 1.017

Encrypt 1024 1.075 0.990 1.014

Decrypt 1024 1.142 0.994 0.997

Encrypt 2048 1.040 1.097 1.085

Decrypt 2048 1.060 0.954 1.026

Encrypt 4096 1.017 1.058 1.063

Decrypt 4096 1.027 1.100 0.954

Fig. 8. Table summary of the results of utilizing the relative performance

equation with A being the elapsed time of the Clang compiler, and B being

the elapsed time of the GCC compiler.

 The average performance for keys of length 128-bit, 192-
bit, and 256-bit are 1.059, 1.047, and 1.016 respectively. This
provides more evidence that the Clang compiler is faster
utilizing the TinyJAMBU C++ implementation than the GCC
compiler.

B. Challenges and Pitfalls

 Originally, this experiment was also going to be performed
between the Python language and the C++ language.
However, the python implementation of the benchmark
proved to be much less fruitful. After modification to the
benchmark implementation of the Python algorithm, the
benchmark yielded the results below. This benchmark was
performed in the same operating system on the same machine
as mentioned in Section II, Part A. It was ran in Python 3.10.0
in a Python virtual environment to utilize some of the
functions in the Python implementation of the TinyJAMBU
algorithm, as the global Python installation in this version of
Ubuntu is Python 3.8.10.

TABLE IX. TINYJAMBU PYTHON IMPLEMENTATION BENCHMARK

TinyJAMBU Python Implementation

Benchmark
Key Length

(bits)

Elapsed

Time (ns)

CPU Time

(ns)
Iterations

Encrypt 128 23308 23283 26902

Decrypt 128 24036 24036 25828

Encrypt 192 24490 24490 25712

Decrypt 192 24690 24690 26563

Encrypt 256 23129 23125 26996

Decrypt 256 24227 24226 28043

Fig. 9. Table summary of the results of the Python implementation of the

TinyJAMBU algorithm.

 The data provided by this implementation already made it
clear that the C++ implementation of the TinyJAMBU
algorithm was much more optimized and ideal for usage. The
time it took to encrypt/decrypt each key length is thousands of
times more in the Python implementation than in the C++
implementation, regardless of C++ compiler chosen. This may
be due to the fact the implementation of the Python version of
the algorithm is done utilizing a wrapper, and a separate
Application Programming Interface (API). It uses the C++
implementation of the algorithm for the logic, which may be
an explanation for the noticeably higher elapsed times and
CPU times. There is more time spent translating between the
languages through the API. Thus, a comparison and analysis
between separate compilers appeared to be a better option.
The implementation for this algorithm was most likely meant
to be primarily used in C++, so a more meaningful analysis
would be to compare performance between two of the most
widely used C++ compilers.

 It is also hard to perform more analysis on the compilers
due to the information available from the benchmark. It would
be ideal to also utilize more metrics such as cycles per
instruction (CPI), but analysis utilizing this metric is
dependent on the number of instructions. The only mention of
the specific number of instructions in the benchmark results is
that there is 32KiB of instructions in the L1 cache memory.
As this is given in an amount of kilobytes, rather than a
specific number of instructions, utilizing analysis with the CPI
is much harder without making assumptions.

 Thus, the main analysis performed is the relative
performance between the two compilers. The CPI is utilized
to also retrieve the CPU time, which is given to us in the
benchmark results regardless. Since we are also given the
elapsed time, the relative performance equation is the most
concrete metric performed without making assumptions in the
calculation.

IV. CONCLUSION

 The relative performance between both compilers shows
that Clang is the preferred C++ compiler when utilizing the
C++ implementation lightweight cryptographic TinyJAMBU
algorithm. The benchmarking results, conducted on a virtual
environment with a set of defined hardware specifications,
showed that Clang exhibited slightly better performance

compared to GCC across various key sizes (128-bit, 192-bit,
and 256-bit).

REFERENCES

[1] https://github.com/itzmeanjan/tinyjambu

[2] H. Wu, T. Huang, TinyJAMBU: A Family of Lightweight

Authenticated Encryption Algorithms (Version 2), 2021, pp.3-38.

[3] M. Jun, “GCC vs. Clang/LLVM: An In-Depth Comparison of C/C++

Compilers,” unpublished.

[4] https://github.com/google/benchmark

https://github.com/itzmeanjan/tinyjambu
https://github.com/google/benchmark

